Qcon 上海 2025 智能体时代的强化学习:AReaL框架与Agent最佳实践

智能体时代的强化学习:AReaL框架与Agent最佳实践

以 RL 打造 Agent

两个核心”暴论”

  1. Agent是未来五年AGI时代最重要的事。
  2. 强化学习是构建Agent最关键的技术。

强化学习的历史发展与突破

强化学习的早期认知

大多数人对强化学习的认知来源于:

  • AlphaGo:DeepMind用强化学习训练围棋智能体,击败李世石和柯洁
  • OpenAI打Dota:2019年用强化学习击败两届世界冠军OG
  • 其他游戏AI:腾讯打王者荣耀、星际争霸等

当年的强化学习智能体主要都是打游戏的,与大模型驱动的AGI时代似乎没有太大关系。

强化学习与大模型的结合转折点

2020-2022年的关键变化

GPT-3 API的问题

  • 2020年OpenAI推出GPT-3 API时存在严重问题
  • 例子:输入”explain the moon landing to a six year old in a few sentences”
  • GPT-3会输出重复内容:”explain the serious gravity, explain the serious relative, explain blah blah blah”
  • 原因:大模型训练基于next token prediction,但用户给的是指令(instruction following problem)

注: “Next Token Prediction”(下一个 token 预测)是大语言模型(LLM)的核心机制。简单来说,它的意思是:给定一段文本的前面部分,模型预测接下来最可能出现的“token”是什么。

RLHF技术的突破

  • OpenAI花了两年时间解决这个问题
  • 2022年推出InstructGPT,采用RLHF(Reinforcement Learning from Human Feedback)技术
  • 方法:找人标注数据,判断哪些回答遵从指令,哪些不遵从
  • 训练奖励模型,然后用强化学习让模型探索获得最高分数的回答
  • 结果:同样的基座模型,有没有强化学习决定了好用还是不好用

注: RLHF(Reinforcement Learning from Human Feedback,基于人类反馈的强化学习)是一种用于对齐大语言模型(LLM)的技术。它的核心目标是:让模型的输出更符合人类的偏好、价值观和意图,而不仅仅是“语法正确”或“统计上常见”。

强化学习推动AGI产品发展的三个阶段

  • 第一阶段:2022年ChatGPT

    • 由RLHF技术引爆,让大家第一次感受到AGI能力
    • 强化学习捅破了窗户纸,让AGI能力真正可用
  • 第二阶段:2024年推理模型(Reasoning Model)

    • 也称为思考模型(Thinking Model)
    • 特点:给模型一个问题后,它会先想一会,输出大量thinking token
    • 例子:帮我算个24点,思考模型(比如 deepseek)会先在”草稿纸”上写10分钟(输出thinking token),然后给答案
    • 技术:也是强化学习驱动,模型自己探索如何思考, 思考什么,自己判断答案对不对, 也就产生了推理模型
    • 训练范式与RLHF类似,但判断标准可能不同
  • 第三阶段:2025年Agent模型

    • 基于Agent的强化学习技术
    • 代表产品:ChatGPT Deep Research 等

Agent产品的发展与特点

成功的Agent产品案例

  • ChatGPT Deep Research
    • 2024年第一个比较成功的Agent产品
    • 功能:给它一个topic,帮你做研究
    • 工作流程:
      • 花很多时间思考
      • 调用工具,在网上搜索很多topic
      • 可能运行20分钟到1小时
      • 最终给出非常详实、有大量引用和reference的报告
  • Manus /ChatGPT Agent / Kimi Agent Mode
    • 功能更丰富,可以帮你做PPT
    • 在Sandbox(沙盒)环境中工作:
      • 读取PDF文件
      • 在阅读器中打开PDF
      • 存储PDF文件
      • 编辑和创建文件
      • 在虚拟机中进行各种操作

Agent能力的演进

从Deep Research到Manus的发展体现了Agent能力的进步:

  • Deep Research:除了对话,可以调用搜索工具、浏览器工具,将信息放在Context Window中处理
  • Manus:更进一步,加上了Sandbox工程AI,相当于有了自己的电脑

AI的能力演进:

  1. 有了脑子(大模型)
  2. 有了草稿纸和笔(Context Window)
  3. 有了一台自己的电脑(Sandbox)

产品发展趋势分析

  • 用户交互的变化
    • ChatGPT时代:需要很长的prompt,详细描述要做什么
    • Agent时代:用户说的话越来越抽象,越来越少
  • AI能力的变化
    • ChatGPT:1秒钟给出文本输出
    • Thinking Model:1-2分钟思考后给出答案
    • Agent Model:1小时处理复杂任务,主动行动
    • 未来: 牛马 AI, AI一直在做事, 主动帮人安排
  • 从Reactive到Proactive的转变
    • 传统模式:用户告诉AI做什么(Reactive)
    • 未来趋势:AI主动准备,告诉用户要不要(Proactive)
    • 例子:OpenAI的ChatGPT Plus每天主动推送早报等内容

未来愿景

理想的AI助手具体技术化来讲:

  • 信息模糊处理:人很难把想做的事讲清楚
  • 个性化:每个人的需求不一样
  • 主动规划:主动安排和执行任务
  • 提前工作:AI不需要休息,可以一直工作

什么是好的 Agent 团队

  • 组织 AI 化
  • 技术栈完整
  • 持续高速0-1 创新, 高效迭代

为什么Agent需要RL(强化学习)

市面上Agent 有各种 framework, 这些框架主要通过拖拉拽的方式构建Agent工作流,但对于复杂的Agent问题存在局限性。

强化学习解决的三大核心问题

问题一:处理不确定性和冲突信息

  • 案例:阿里CTO是谁?

    • 阿里和蚂蚁有很多子公司,每个公司都有CTO
    • 搜索”蚂蚁CTO”会得到很多不同的结果
    • 需要AI去理解和判断才能做出正确回答
  • 案例:退票问题

    • 用户说”退票”,但上下文可能很不确定
    • 退什么票?需要AI主动提问澄清

问题二:长期记忆和个性化

  • 案例:美团小美推荐
    • 我说”要吃晚饭,要清淡点”
    • AI推荐白灼生菜等蔬菜
    • 但我从来不点蔬菜,喜欢吃肉
    • “清淡点”对我可能意味着”清淡点的肉”
    • 需要从很长的记录中挖掘个性化信息

问题三:海量工具和模型选择

  • 案例:Reddit上的模型组合使用
    • Claude写代码很聪明但Context Window短且贵
    • Gemini写代码不够聪明但Context Window长且便宜
    • 用户发现可以用Claude调用Gemini:让Gemini读代码,然后扔给Claude写
    • 相当于”聪明的人指挥体力无限的傻子干活”
    • 这种最佳实践应该由AI自己探索出来,而不是人工定义规则

强化学习的统一解决方案

强化学习可以用统一的框架解决这些复杂问题:

  • 让AI在环境中自己探索
  • 涌现出处理复杂任务的能力
  • 比规则和Workflow更灵活和强大

搜索智能体案例深度分析-看似简单的问题实际很复杂

问题案例:伦敦奥运会中国金牌数

表面上的简单

  • 问题:伦敦奥运会中国拿多少块金银铜牌?
  • 看起来很简单,百度搜索就能找到答案
  • 官网显示:中国队拿了38块金牌,是2012年历史第二高的成绩

实际的复杂性

  • 正确答案应该是39枚金牌
  • 原因:2012年伦敦奥运会女子田径竞走项目
  • 中国派出三位选手,当时拿了第3、4、5名
  • 后来第1、2名被查出禁药,被剥夺奖牌资格
  • 11年后(2023年),中国选手获得了补发的金牌
  • 所以现在问中国奥运会金牌数,答案应该是39枚

现有产品的表现
测试了多个产品:

  • DeeSeek:搜出38枚金牌
  • ChatGLM:38枚金牌
  • ChatGPT:搜到了39枚金牌的信息,说”有一些资料显示数字略有差异,39枚金牌”,但最后结论还是38枚金牌(因为大量信息都是38枚)
  • ChatGPT Agent Mode:会答对

传统方法vs强化学习方法

传统Multi-Agent System方法

需要构建复杂的多智能体系统:

  • 搜索Agent
  • 核查Agent
  • 调用知识的Agent
  • 检验Agent
  • 需要很长很复杂的流程

强化学习方法

极简设计

  • 一个模型
  • 两个工具:搜索工具 + 点击网页工具
  • 让模型在环境中循环探索

实际效果

  • 第5轮搜到39枚金牌的新闻
  • 开始疯狂核查
  • 经过60多轮迭代
  • 最终确定正确答案是39枚金牌
  • 还具有泛化能力,可以添加更强的工具
  • 32B模型可以在准确度上超越商用产品

强化学习的两大优势

  1. 简单: 简化Agent的workflow, 不需要复杂的多智能体系统设计
  2. 涌现: 让AI涌现出复杂的多步推理能力, 通过探索自动获得复杂能力

Agent RL 的核心难点

强化学习面临的三大挑战

要做好强化学习,必须解决三个问题:

  1. Infra和算法:强化学习算法运算速度很慢很慢
  2. 数据:训练数据的获取和质量, 强化学习的数据是很缺很缺德, 预训练数据可以在网上扒, 但强化学习的数据不太能直接网上扒
  3. 环境:Sandbox等执行环境的构建

如何全栈解决 Agent RL 的难点

Infra(基础设施)和算法优化

速度慢的根本原因

强化学习的三个流程

  1. 生成:让模型在环境中交互生成数据
  2. 评分:用奖励模型计算奖励
  3. 训练:放到训练集中训练

复杂性分析

  • 涵盖了三种完全不同的计算模块
  • 预训练只有训练,SFT只有训练,评测只有评测
  • 强化学习包含:训练、评测、在线生成、Sandbox等
  • 是一个算法编排了多种完全不同计算模式的复杂系统

算法与系统协同设计的重要性

为什么需要协同设计

  • 强化学习算法创新很容易碰到系统瓶颈
  • 四个系统模块(推理/训练/环境/算法整合)中任何一个打满都会成为瓶颈
  • 强化学习算法很容易打到系统瓶颈

团队组织建议

  • 做算法的同学需要了解Infra
  • 做Infra的同学需要了解算法
  • 最好能坐在一起工作, 这是加快创新节奏的重要方式

具体的性能瓶颈

搜索智能体的统计数据

  • 平均搜索时间:要调用 google 搜索引擎, 一个batch 5-10分钟
  • 长尾效应严重:特别难的prompt需要1-2小时
  • 问题:如果每个batch都要等最慢的那个,一天24小时只能更新12-24次
  • 导致大量CPU/GPU等待时间

AReaL的解决方案:异步架构

核心思想:推理不能等

  • 一部分卡不停地做推理,没有等待
  • 训练也没有等待,有数据就训练
  • 中间用随时更新参数的方式
  • 如果推理到一半需要更新参数,就停下来更新,然后用新参数继续rollout
  • 实现完全没有系统资源浪费

技术创新

  • 系统上做异步调整
  • 算法上做相应调整以适应异步更新
  • 在Agent场景上实现5倍加速,且没有效果损失

训练数据问题

数据稀缺的问题

  • 预训练可以直接从网上获取数据
  • 强化学习的训练数据不能直接从网上获取
  • 一般问题都跟简单, 用户提出的复杂问题很少,难以挖掘复杂问题的测试集

数据合成解决方案

Agenic合成数据方法

  1. 从网页上获取答案(搜索比较简单,从答案开始)
  2. 从答案构造问题
  3. 不断让问题变得更加复杂
  4. 评估问题,保证问题和答案匹配正确
  5. 难度检查:问题不能太难也不能太简单,需要适合强化学习自我提升的难度
  6. 构造出适合的训练数据

开源贡献

  • 数据、代码和脚本都已开源
  • 帮助社区训练更好的Agent产品

环境构建 - Aworld 项目

  • 主要是Sandbox等执行环境的构建
  • 未来会开源更多的Sandbox项目
  • 帮助大家训练更好的Agent产品

让更多人用 RL 训练更好的 Agent

AReaL团队发展历程与经验总结

团队发展时间线

  • 2020年:开始做开源学术项目,多智能体强化学习框架
  • 2022年:第一个大规模游戏场景可用的强化学习分布式训练框架
  • 2023年:当时最快的RLHF框架
  • 2024年:开始做AReaL,专注Agent AI

技术循环的有趣观察

回到原点的循环

  • 2025年的强化学习与当年打游戏很像
  • 有个大模型在”玩游戏”(Sandbox可以是浏览器或电脑)
  • 遇到的问题与打游戏类似:有黑盒环境,很慢,不能修改游戏规则
  • 五年后技术回到了当年的原点
  • 系统设计和算法技术都有循环

重要的经验教训

技术需要两个条件才能发挥价值

  1. 技术需要对的时间
    • 强化学习如果在2022年以前,大家很难感知到价值
    • 不是大家的错,而是技术没有在对的时间被感知
  2. 技术需要好的产品承载
    • 强化学习技术如果不是因为ChatGPT、RLHF、Agent model,大家可能也感知不到
    • 技术本身可能没有价值,需要好的产品去承载才能发挥更大价值

团队理念

  • 技术一定要产品化, 所有技术同学都应该尽可能把技术产品化
  • 希望创造能够实现AGI的Agent产品, 成为支持产品持续进化的平台

总结与展望

核心观点回顾

  1. Agent是AGI时代最重要的事情:从产品发展趋势和技术演进可以看出Agent的重要性
  2. 强化学习是Agent的最关键技术:能够统一解决Agent面临的复杂问题,让AI涌现出复杂能力

技术发展趋势

  • 从简单的对话模型到能够主动行动的Agent
  • 从Reactive到Proactive的转变
  • 从规则驱动到强化学习驱动的智能涌现
  • 算法与系统协同设计的重要性日益凸显

未来展望

  • Agent产品将越来越智能和主动
  • 强化学习技术将在Agent领域发挥更大作用
  • 需要更好的基础设施、数据和环境支持
  • 技术产品化是实现价值的关键路径
-------------本文结束感谢您的阅读-------------

欢迎关注我的其它发布渠道